you asked. To answer them, we’ll take a
kind of “outside-in” approach, by com-
paring HTML, SGML, and XML.

If you've had any exposure to the
Internet, you probably have an intuitive
notion of what HTML (Hyper Text
Markup Language) is. Basically, HTML
is a language for specifying the layout of
Web pages. Any given HTML docu-
ment contains two broad categories of
information: content and markup. In
HTML, markup specifies how content
appears. For example, you can specify
various levels of headings, emphasize
(with bold or italic) portions of the con-
tent, or display several content items as a
list. In HTML, markup is contained
between angle brackets, <like this>;
everything else is content.

The problem with HTML is its sim-
plicity. It can only do a limited range of
things, and as it evolves, different prod-
ucts interpret its markup differently, or
in some cases, not at all. Eventually, one
might suspect, a set of standards would
be reached, and vendors would be able to
create compatible applications that con-
form to those standards. From that point
of view, the problem is not just the rapid
rate of evolution, but the idea that there
are probably an infinite variety of ways it
could evolve to meet different needs.

There are deeper problems as well.
HTML only concerns itself with appear-
ance and presentation. HTML doesn’t
touch the question of structure. It turns
out that there are lots of interesting and

COMPUTER CONNECTIONS

MARKUP LANGUAGE). WHAT IS IT? WHAT IS IT GOOD FOR?
HOW DOES IT DIFFER FROM HTML? WHAT DIFFERENCE WILL IT

MAKE—IF ANY? THOSE ARE ALL GOOD QUESTIONS, AND WE'RE GLAD

FIG. 1I—COMING SOON to a browser near
you: XML.

useful things that can be done when you
concern yourself with both.

SGML

In the larger scheme of things, HTML
is an applicadon of SGML (Standard
Generalized Markup Language). SGML
is not a markup language, like HTML.
Rather, SGML is a metalanguage, that is, a
language for specifying other markup lan-
guages, like HTML. In other words,
SGML is markup language language.

SGML is an ISO standard; it grew
out of research dating back to the 1960s.
Ordinary people don’t use SGML; large
publishing organizations do. Typically, it
is used to organize large publishing pro-
jects such as airplane maintenance man-
uals and encyclopedias.

The way you do anything useful with
SGML is by creating a Document Type
Definition (DTD). The DTD specifies
what the elements of a document may
be, and how they relate to one another.
HTML, in fact, is nothing more than an
SGML DTD; an often very loosely
interpreted DTD, but a DTD nonethe-
less. The HTML DTD does nothing

BY JEFF HOLTZMAN
COMPUTER EDITOR

XML: Who Gontrols The DTD?

OU MAY HAVE CAUGHT THE BUZZ ABOUT XML (EXTENDED

but specify the set of tags, such as <hl>,
, and so forth, that make up a Web
page. Microsoft and Netscape may
choose to render (present) <hl> in dif-
ferent ways, but the fact is that they’re
both working off the same set of tags,
that is, the same DTD.

Sort of. Actually, they’re not, and
that’s why different Web pages display
differently—or not at all—in different
browsers.

So, what’s the solution? You could
add more tags, but that is a poor choice.
More tags mean continuing political
battles over standards, ergo continuing
incompatibilities. A more general solu-
tion is the real answer. Enter XML.

XML

So where does XML fit in? XML is
nota DTD like HTML. XML does not
specify the ultimate tag set to end all
tag sets.

XML is like SGML on a severe
weight-loss program. As the XML FAQ
states, XML is more like SGML—— than
HTML++. SGML is an 18-wheeler;
XML is a Ferrari. That’s enough analo-
gies; you get the idea.

XML is a simplified subset of SGML
with the following characteristics.

* It greatly increases the (potental)
power and variety of Web (and other)
documents.

¢ It disentangles evolution from the
standardization process.

® It “democratizes” the DTD creation
process. If you need a specialized capabil-
ity, create a DTD for it, and write some
specialized code to handle it. You needn’t
be afraid that you’ll break someone else’s
browser or plug-in.

* It is extensible. The earliest exten-
sions concern themselves with more var-
ied hyper-linking and better link man-

MON SIU0L08|3 ‘8664 ANy

N
(3]

Electronics Now, July 1998

N
-]

agement (using XLL, a developing Ex-
tended Link Language), and with port-
able style sheets (using XSL, a develop-
ing Extensible Stylesheet Language).

* Code to write XML parsers and
processors can be much simpler than cor-
responding SGML code, which greatly
lowers the barrier to entry for smaller
companies and specialized applications. It
also gives established SGML tool ven-
dors a leg up on the competition as XML
is a strict subset of SGML.

In a sense, it can be useful to think of
XML as a portable, self-documenting
database format. Any XML processor
can read any conforming XML docu-
ment and be able to decode the schema
or structure of that document. It may
not be able to do anything with that
structure, but it will be able to under-
stand it.

Continuing the database analogy, the
DTD is really the schema. The DTD can

be contained within the document, or
referenced externally. An HTML DTD
reference usually looks something like
this, <'DOCTYPE HTML PUBLIC “-
//W3C//DTD HTML 3.2//EN”>, and
appears as the first line of an HTML file.

On the other hand, it is not required
that an XML document have a DTD. In
that case, it has an implicit DTD, which
is simply the structure defined by the
tags in the document. If it does have a
DTD, the DTD may be contained with-
in the document or externally refer-
enced (or both).

By the way, the XML spec uses two
terms that seem to confuse lots of peo-
ple: valid and well-formed. A well-formed
XML document basically has properly

formed and nested tags. A valid XML

document is simply a well-formed docu-
ment that has an explicit DTD. An
invalid document is not necessarily incor-
rect; it just doesn’t have an explicit DTD.

What can you do with XML?

The answer is easy; the ramifications
subtle. Using XML you can create your
own specialized markup languages to
handle your own special needs, without
worrying about breaking the other guy’s
stuff. Does that mean Microsoft and
Netscape can achieve a lasting peace? In
and of itself, not really.

An example can help flesh out the
issues. One of the first applications of
XML is a language called MathML.
Like XML itself, MathML is a product
of the World Wide Web Consortium; as’
such it is vendor independent. As of this
writing, MathML is not an official stan-
dard, but it’s close. ‘

At the most basic level, the purpose of ‘

MathML is to provide a standard means
of embedding mathematical expressions
in Web pages so that scientists and engi-
neers can communicate without convert-
ing everything to GIF images.

GIFs are bad; they take up space and
use bandwidth, but even worse, the con-
version process discards information.
MathML provides a means of specifying
presentation, without discarding the
semantic content, i.e., the meaning of the
expression. That in turn provides main-
tainability, reusability, cut-and-paste-
ability, and other benefits.

In that sense, MathML is “two, two,
two mints in one.” The MathML DTD
in fact defines two orthogonal sets of
tags, one specifying presentation, the
other specifying content. Listing 1 shows
the presentation tags, and Listing 2

shows the content tags for this equation:

x"2 + 4x + 4 = 0. Both sets of tags would
be contained in a single document.

Except in very simple cases, people
will not edit those tags by hand.
Graphical equation editors will provide
a user interface; behind the scenes,
MathML gets generated, stored, trans-
ferred, and possibly converted, say to
PostScript or TeX for hardcopy, or to
Braille, or to audio format for hearing-
impaired users. (Perhaps a new market
for equations on tape will emerge.)

All those output conversions are both
possible and practical because of the
robust, unambiguous nature of MathML.

Getting there didn’t happen over-
night. Over the years, there have been
several attempts at producing something
that could do what MathML can (or will
shortly be able to) do. Those attempts
provided fodder for the current activi-
ties. These are the organizations official-
ly listed as participating in development
of the current spec: Adobe, the American
Mathematical Society, Design Science,
Elsevier Science, The Geometry Center
at the University of Minnesota, HP, IBM,
INRIA, SoftQuad, Waterloo Maple Inc.,
and Wolfram.

That's some pretty distinguished com-
pany. Does this mean we’ll be able to take
MathML models out of Mathematica and
plug them directly into Maple? That
would be nice. The companies would dis-
tnguish the products by the quality of
their editors and rendering engines.

But what happens when Wolfram
wants to implement something that’s not
covered by the spec? Does the company
have the reserve to wait for standardiza-
tion to occur, or does it create its own
extension and forge ahead?

Conclusions

So, what can you do with XML? You
could define your own markup DTD.
Then, to do anything with it, you would
have to create your own edit engine,
and your own rendering engine. That’s
just great if your XML dialect is some-
thing nobody else really has much of an
interest in.

But what if there are interested par-
ties? Say, for example, that you want to
create an XML dialect for electronics
symbols. Electronics Now could create
its own for publication in this magazine,
but what about all the other magazines?
What about companies that design and
build electronic devices? What about

(Continued on page 30)

COMPUTER CONNECTIONS

continued from page 26

the educational establishment?

The point is that we could quickly
end up embroiled in a standards war.
And it’s really the same kind of war as
the Microsoft/Netscape browser wars.
The issue is who controls the DTD.

Despite the hype, I think XML is a
valuable technology. I don’t think it’s
going to be a user-level panacea, because
there are still too many opportunities for
market wars to take place.

XML value is more infrastructural.
It’s like a very low-level API that every-
one can write to. Even if (when) differ-
ences emerge, the facilities of the envi-
ronment itself provide a means for
working out those differences.

I sure hope so, anyway.

That’s all the room we have for now,
so we'll see you next time. Until then,
you can stay in touch via e-mail at
jeff@ingeninc.com. [EN

